Fuzzy Hidden Markov Models for Indonesian Speech Classification

Fuzzy Hidden Markov Models for Indonesian Speech Classification:

‘via Blog this’

 

Fuzzy Hidden Markov Models for Indonesian Speech Classification


Intan Nurma Yulita*,** Houw Liong The**, and Adiwijaya**


*Faculty of Informatics, Telkom Institute of Technology 
**Graduate Faculty, Telkom Institute of Technology, Jalan Telekomunikasi No.1, DayeuhKolot, Jawa Barat 40257, Indonesia


Received: September 15, 2011

Accepted: November 15, 2011


Keywords: fuzzy logic, hidden Markov models, speech, classification, clustering

Journal ref: Journal of Advanced Computational Intelligence and Intelligent Informatics, Vol.16, No.3 pp. 381-387, 2012

Abstract



Indonesia has many tribes, so that there are many dialects. Speech classification is difficult if the database uses speech signals from various people who have different characteristics because of gender and dialect. The different characteristics will influence frequency, intonation, amplitude, and period of the speech. It makes the system must be trained for the various templates reference of speech signal. Therefore, this study has been developed for Indonesian speech classification. The solution is a new combination of fuzzy on hidden Markov models. The result shows a new version of fuzzy hiddenMarkovmodels is better than hidden Markov model.

Reference

[1] S. D. Shenouda, F. W. Zaki, and A. Goneid, “Hybrid Fuzzy HMm System for Arabic Connectionist Speech Recognition,” Proc. of the 5th WSEAS Int. Conf. on Signal Processing, robotics and Automation, pp. 64-69, 2006.
[2] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition,” Proc. of the IEEE, Vol.77, No.2, 1989.
[3] P.Melin, J. Urias, D. Solano, et al., “Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms,” Engineering Letters, Vol.13, No.2, 2006.
[4] L. Chen, S. Gunduz, and M. T. Ozsu, “Mixed Type Audio Classification with Support Vector Machine,” Proc. of the IEEE Int. Conf. on Multimedia and Expo, 2006.
[5] R. Halavati, S. B. Shouraki, M. Eshraghi, and M. Alemzadeh, “A Novel Fuzzy Approach to Speech Processing,” 5th Hybrid Intelligent Systems Conf., 2004.
[6] S. E. Levinson, L. R. Rabiner, A. E. Rosenberg, and J. G. Wilpon, “Interactive Clustering Techniques for Selecting Speaker-Independent Reference Templates For Isolated Word Recognition,” IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.Assp-27, 1979.
[7] B. H. Juang and L. R. Rabiner, “Fundamentals of Speech Recognition,” Prentice-Hall, 1993.
[8] B. H. Juang and L. R. Rabiner, “Hidden Markov Models for Speech Recognition,” Technometrics, Vol.33, No.3, pp. 251-272, 1991.
[9] J. Zeng and Z.-Q. Liu, “Interval Type-2 Fuzzy Hidden Markov Models,” Proc. of Int. Conf. on Fuzzy Systems, Vol.2, pp. 1123-1128, 2004.
[10] J. Zeng and Z.-Q. Liu, “Type-2 Fuzzy Hidden Markov Models to Phoneme Recognition,” Proc. of the 17th Int. Conf. on Pattern Recognition, 2004.
[11] H. Riza and O. Riandi, “Toward Asian Speech Translation System: Developing Speech Recognition and Machine Translation for Indonesian Language,” Int. Joint Conf. on Natural Language Processing, 2008.
[12] D. P. Lestari, K. Iwano, and S. Furui, “A Larger Vocabulary Continuous Speech Recognition System for Indonesian Language,” 15th Indonesian Scientific Conf. in Japan Proceedings, 2006.
[13] H. Uguz, A. Ozturk, R. Saracoglu, and A. Arslan, “A Biomedical System Based on Fuzzy Discrete HiddenMarkov Model for The Diagnosis of The Brain Diseases,” Expert SystemsWith Applications, Vol.35, pp. 1104-1114, 2008.
[14] S. Kusumadewi, H. Purnomo, and A. Logika, “Fuzzy untuk Pendukung Keputusan,” Penerbit Graha Ilmu, pp. 84-85, 2004.
[Notice]
* “Preview” is the first 2 pages of the article. You don’t need the registration.
* To read the PDF file you will then need to download and install the Adobe Reader.
Adobe Reader is free and available for download here:

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s